FTIR Conformational Studies of Triclosan in an Argon Matrix

Nihal Kus,^{1,2} Igor Reva,¹ Sevgi Bayari,³ Rui Fausto¹

¹Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal ²Department of Physics, Anadolu University, 26470 Eskisehir, Turkey ³Hacettepe University, Faculty of Education, 06800, Ankara, Turkey

The preferred conformations of triclosan, a commonly used antibacterial and antifungal agent, and their vibrational spectra were studied by matrix-isolation Fourier transform infrared spectroscopy in argon matrix (T= 13 K), and interpreted on the basis of DFT(B3LYP)/ 6-311++G(d,p) calculations. The calculated ground-state potential energy surface of triclosan exhibits two low-energy minima (Figure 1), differing by orientation of the C1-C6-O7-C8 (β_1) and C6-O7-C8-C9 (β_2) dihedral angles. The most stable conformer I ($\beta_1=160.3^\circ$, $\beta_2=123.8^\circ$) was found to be lower in energy at 0 K, by *ca.* 1.4 kJ mol⁻¹, than conformer II (β_1 =-93.1°, $\beta_2=177.7^\circ$). At room temperature, due to the higher entropy of conformer I, the order of conformational stability is reverse and is *ca*. 0.73 kJ mol^{-1} in favour of form II. Therefore, I and II are expected to constitute ca. 43% and 57% of the total population in gas phase, at room temperature. The barrier for conversion between forms I and II was calculated to be ca. 15 kJ mol⁻¹. The IR spectrum of the compound isolated in solid argon was obtained and interpreted. Preliminary photochemical experiments on the matrix-isolated triclosan were also undertaken. The compound was found to react upon UV irradiation ($\lambda > 200$ nm) giving rise to a ketene, which is identifiable by observation of the ketene antisymmetric stretching characteristic intense IR band around 2140 cm^{-1} .

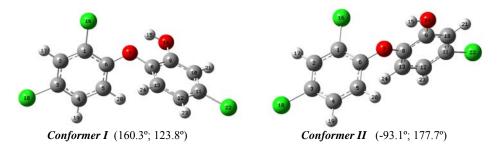


Figure 1 - Calculated conformers of triclosan. Values in parenthesis are C1-C6-O7-C8 and C6-O7-C8-C9 dihedrals.