FTIR Conformational Studies of Triclosan in an Argon Matrix

Nihal Kus, ${ }^{1,2}$ Igor Reva,,${ }^{1}$ Sevgi Bayari, ${ }^{3}$ Rui Fausto ${ }^{1}$
${ }^{1}$ Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
${ }^{2}$ Department of Physics, Anadolu University, 26470 Eskisehir, Turkey
${ }^{3}$ Hacettepe University, Faculty of Education, 06800, Ankara, Turkey

The preferred conformations of triclosan, a commonly used antibacterial and antifungal agent, and their vibrational spectra were studied by matrix-isolation Fourier transform infrared spectroscopy in argon matrix ($\mathrm{T}=13 \mathrm{~K}$), and interpreted on the basis of DFT(B3LYP)/ $6-311++G(d, p)$ calculations. The calculated ground-state potential energy surface of triclosan exhibits two low-energy minima (Figure 1), differing by orientation of the C1-C6-O7-C8 (β_{1}) and C6-O7-C8-C9 (β_{2}) dihedral angles. The most stable conformer I ($\beta_{1}=160.3^{\circ}, \beta_{2}=123.8^{\circ}$) was found to be lower in energy at 0 K , by $c a .1 .4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, than conformer II $\left(\beta_{1}=-93.1^{\circ}\right.$, $\beta_{2}=177.7^{\circ}$). At room temperature, due to the higher entropy of conformer I, the order of conformational stability is reverse and is $c a .0 .73 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in favour of form II. Therefore, I and II are expected to constitute ca. 43% and 57% of the total population in gas phase, at room temperature. The barrier for conversion between forms I and II was calculated to be ca. 15 kJ mol^{-1}. The IR spectrum of the compound isolated in solid argon was obtained and interpreted. Preliminary photochemical experiments on the matrix-isolated triclosan were also undertaken. The compound was found to react upon UV irradiation ($\lambda>200 \mathrm{~nm}$) giving rise to a ketene, which is identifiable by observation of the ketene antisymmetric stretching characteristic intense IR band around $2140 \mathrm{~cm}^{-1}$.

Conformer I ($160.3^{\circ} ; 123.8^{\circ}$)

Conformer II (-93.1 $\left.{ }^{\circ} ; 177.7^{\circ}\right)$

Figure 1 - Calculated conformers of triclosan. Values in parenthesis are C1-C6-O7-C8 and C6-O7-C8-C9 dihedrals.

