Synthesis of Zn₃(VO₄)₂ – a Comparative Study

Maya Markova-Velichkova¹, Reni Iordanova¹, Yanko Dimitriev²

¹ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. *E-mail:* markova@svr.igic.bas.bg

² University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

Different synthesis methods were applied in order to prepare $Zn_3(VO_4)_2$ compound: melt quenching technique, conventional solid state synthesis and mechanochemically assisted solid synthesis. The phase and structural transformations were monitored by X-ray diffraction (XRD). The formation of $Zn_3(VO_4)_2$ was also confirmed by infrared spectroscopy (IR). Applying melt quenching method two different techniques were used: i) pouring the melt and press between two copper plates (cooling rate 10^2 K/s) and ii) roller technique (cooling rate 10^4 – 10^5 K/s). In both cases several phases (Zn₄V₂O₉, Zn₂V₂O₇, ZnO, V₂O₅, Zn₃(VO₄)₂) were detected on x-ray diffractograms. XRD patterns of mechanochemically activated precursors for different time (from 0,5 to 4 hours) shown presence of amorphous phase together with diffraction peaks of $Zn_4V_2O_9$ as dominated phase and Zn_2VO_4 . Pure $Zn_3(VO_4)_2$ was prepared after heat treatment at 700 °C of mechanochemically activated sample. Using conventional solid state reaction Zn₃(VO₄)₂ was obtained as main crystalline phase. ZnO (3.5 wt.%) is also detected on diffractogram. It was established that mechanochemically assisted solid synthesis is more appropriated method for synthesis of $Zn_3(VO_4)_2$. The photocatalytic measurements were carried out on the $Zn_3(VO_4)_2$ powders obtained by both methods. Photocatalytic activity was evaluated by degradation of a model aqueous solution of Malachite Green (MG) upon UV-light irradiation.

Acknowledgment: Thanks are due to the Financial Support of Bulgarian National Science Fund, Ministry of Education and Science Grants: TK-X-1702/07 and the National Science Fund of Bulgaria, National Centre for New Materials UNION, Contract No DO-02-82/2008.